13 research outputs found

    From local counterfactuals to global feature importance: efficient, robust, and model-agnostic explanations for brain connectivity networks

    Get PDF
    Background: Explainable artificial intelligence (XAI) is a technology that can enhance trust in mental state classifications by providing explanations for the reasoning behind artificial intelligence (AI) models outputs, especially for high-dimensional and highly-correlated brain signals. Feature importance and counterfactual explanations are two common approaches to generate these explanations, but both have drawbacks. While feature importance methods, such as shapley additive explanations (SHAP), can be computationally expensive and sensitive to feature correlation, counterfactual explanations only explain a single outcome instead of the entire model. Methods: To overcome these limitations, we propose a new procedure for computing global feature importance that involves aggregating local counterfactual explanations. This approach is specifically tailored to fMRI signals and is based on the hypothesis that instances close to the decision boundary and their counterfactuals mainly differ in the features identified as most important for the downstream classification task. We refer to this proposed feature importance measure as Boundary Crossing Solo Ratio (BoCSoR), since it quantifies the frequency with which a change in each feature in isolation leads to a change in classification outcome, i.e., the crossing of the model's decision boundary. Results and conclusions: Experimental results on synthetic data and real publicly available fMRI data from the Human Connect project show that the proposed BoCSoR measure is more robust to feature correlation and less computationally expensive than state-of-the-art methods. Additionally, it is equally effective in providing an explanation for the behavior of any AI model for brain signals. These properties are crucial for medical decision support systems, where many different features are often extracted from the same physiological measures and a gold standard is absent. Consequently, computing feature importance may become computationally expensive, and there may be a high probability of mutual correlation among features, leading to unreliable results from state-of-the-art XAI methods

    Fine-Grained Emotion Recognition Using Brain-Heart Interplay Measurements and eXplainable Convolutional Neural Networks

    Get PDF
    Emotion recognition from electro-physiological signals is an important research topic in multiple scientific domains. While a multimodal input may lead to additional information that increases emotion recognition performance, an optimal processing pipeline for such a vectorial input is yet undefined. Moreover, the algorithm performance often compromises between the ability to generalize over an emotional dimension and the explainability associated with its recognition accuracy. This study proposes a novel explainable artificial intelligence architecture for a 9-level valence recognition from electroencephalographic (EEG) and electrocardiographic (ECG) signals. Synchronous EEG-ECG information are combined to derive vectorial brain-heart interplay features, which are rearranged in a sparse matrix (image) and then classified through an explainable convolutional neural network. The proposed architecture is tested on the publicly available MAHNOB dataset also against the use of vectorial EEG input. Results, also expressed in terms of confusion matrices, outperform the current state of the art, especially in terms of recognition accuracy. In conclusion, we demonstrate the effectiveness of the proposed approach embedding multimodal brain-heart dynamics in an explainable fashion

    Improving Emotion Recognition Systems by Exploiting the Spatial Information of EEG Sensors

    Get PDF
    Electroencephalography (EEG)-based emotion recognition is gaining increasing importance due to its potential applications in various scientific fields, ranging from psychophysiology to neuromarketing. A number of approaches have been proposed that use machine learning (ML) technology to achieve high recognition performance, which relies on engineering features from brain activity dynamics. Since ML performance can be improved by utilizing 2D feature representation that exploits the spatial relationships among the features, here we propose a novel input representation that involves re-arranging EEG features as an image that reflects the top view of the subject’s scalp. This approach enables emotion recognition through image-based ML methods such as pre-trained deep neural networks or "trained-from-scratch" convolutional neural networks. We have employed both of these techniques in our study to demonstrate the effectiveness of our proposed input representation. We also compare the recognition performance of these methods against state-of-the-art tabular data analysis approaches, which do not utilize the spatial relationships between the sensors. We test our proposed approach using two publicly available benchmark datasets for EEG-based emotion recognition tasks, namely DEAP and MAHNOB-HCI. Our results show that the "trained-from-scratch" convolutional neural network outperforms the best approaches in the literature, achieving 97.8% and 98.3% accuracy in valence and arousal classification on MAHNOB-HCI, and 91% and 90.4% on DEAP, respectively

    Urban Swarms: A new approach for autonomous waste management

    Get PDF
    Modern cities are growing ecosystems that face new challenges due to the increasing population demands. One of the many problems they face nowadays is waste management, which has become a pressing issue requiring new solutions. Swarm robotics systems have been attracting an increasing amount of attention in the past years and they are expected to become one of the main driving factors for innovation in the field of robotics. The research presented in this paper explores the feasibility of a swarm robotics system in an urban environment. By using bio-inspired foraging methods such as multi-place foraging and stigmergy-based navigation, a swarm of robots is able to improve the efficiency and autonomy of the urban waste management system in a realistic scenario. To achieve this, a diverse set of simulation experiments was conducted using real-world GIS data and implementing different garbage collection scenarios driven by robot swarms. Results presented in this research show that the proposed system outperforms current approaches. Moreover, results not only show the efficiency of our solution, but also give insights about how to design and customize these systems.Comment: Manuscript accepted for publication in IEEE ICRA 201

    Urban Swarms: A new approach for autonomous waste management

    Get PDF
    Modern cities are growing ecosystems that face new challenges due to the increasing population demands. One of the many problems they face nowadays is waste management, which has become a pressing issue requiring new solutions. Swarm robotics systems have been attracting an increasing amount of attention in the past years and they are expected to become one of the main driving factors for innovation in the field of robotics. The research presented in this paper explores the feasibility of a swarm robotics system in an urban environment. By using bio-inspired foraging methods such as multi-place foraging and stigmergy-based navigation, a swarm of robots is able to improve the efficiency and autonomy of the urban waste management system in a realistic scenario. To achieve this, a diverse set of simulation experiments was conducted using real-world GIS data and implementing different garbage collection scenarios driven by robot swarms. Results presented in this research show that the proposed system outperforms current approaches. Moreover, results not only show the efficiency of our solution, but also give insights about how to design and customize these systems

    A biologically-inspired approach to assess patent-based indicators trends via adaptive marker-based stigmergy

    No full text
    Regional innovation is more and more considered an important enabler of welfare. It is no coincidence that the European Commission has started looking at regional peculiarities and dynamics, in order to focus Research and Innovation Strategies for Smart Specialization towards effective investment policies. In such context, this work aims to support policy makers in the analysis of innovation-relevant trends. For this purpose, a software system is designed and developed to assess innovation trends indicators. In contrast with conventional knowledge-based design, here the approach is biologically-inspired and characterized by self-organization of information, robustness and flexibility of the solution. To determine the dynamics of a set of technological innovation indicators about specialization-diversificationhe the exploitation of the European patent application database is provided. After dataset pre-processing, the resulting time series are converted into spatiotemporal-aggregated behavioral tracks, via marker-based stigmergy, in order to enable knowledge to self-organize and emerge. This allows a marking structure appearing and staying spontaneously at runtime, when some local dynamism occurs. At a second level of processing, similarity evaluation is performed between prototype derived from different timed tracks in order to assess behavior deviations. The purpose of this approach is to overcome an explicit modeling behaviors that is very inefficient to be managed in such varying scenario. The effectiveness of the proposed system has been tested, validated and experimented on real-world scenarios

    Measuring Physical Activity of Older Adults via Smartwatch and Stigmergic Receptive Fields

    No full text
    Physical activity level (PAL) in older adults can enhance healthy aging, improve functional capacity, and prevent diseases. It is known that human annotations of PAL can be affected by subjectivity and inaccuracy. Recently developed smart devices can allow a non-invasive, analytic, and continuous gathering of physiological signals. We present an innovative computational system fed by signals of heartbeat rate, wrist motion and pedometer sensed by a smartwatch. More specifically, samples of each signal are aggregated by functional structures called trails. The trailing process is inspired by stigmergy, an insects’ coordination mechanism, and is managed by computational units called stigmergic receptive fields (SRFs). SRFs, which compute the similarity between trails, are arranged in a stigmergic perceptron to detect a collection of micro-behaviours of the raw signal, called archetypes. A SRF is adaptive to subjects: its structural parameters are tuned by a differential evolution algorithm. SRFs are used in a multilayer architecture, providing further levels of processing to realize macro analyses in the application domain. As a result, the architecture provides a daily PAL, useful to detect behavioural shift indicating initial signs of disease or deviations in performance. As a proof of concept, the approach has been experimented on three subjects

    Detecting Permanent and Intermittent Purchase Hotspots via Computational Stigmergy

    Get PDF
    The analysis of credit card transactions allows gaining new insights into the spending occurrences and mobility behavior of large numbers of individuals at an unprecedented scale. However, unfolding such spatiotemporal patterns at a community level implies a non-trivial system modeling and parametrization, as well as, a proper representation of the temporal dynamic. In this work we address both those issues by means of a novel computational technique, i.e. computational stigmergy. By using computational stigmergy each sample position is associated with a digital pheromone deposit, which aggregates with other deposits according to their spatiotemporal proximity. By processing transactions data with computational stigmergy, it is possible to identify high-density areas (hotspots) occurring in different time and days, as well as, analyze their consistency over time. Indeed, a hotspot can be permanent, i.e. present throughout the period of observation, or intermittent, i.e. present only i n certain time and days due to community level occurrences (e.g. nightlife). Such difference is not only spatial (where the hotspot occurs) and temporal (when the hotspot occurs) but affects also which people visit the hotspot. The proposed approach is tested on a real-world dataset containing the credit card transaction of 60k users between 2014 and 2015

    Assessing Refugees’ Integration via Spatio-Temporal Similarities of Mobility and Calling Behaviors

    No full text
    © 2019 IEEE. In Turkey, the increasing tension, due to the presence of 3.4 million Syrian refugees, demands the formulation of effective integration policies. Moreover, their design requires tools aimed at understanding the integration of refugees despite the complexity of this phenomenon. In this work, we propose a set of metrics aimed at providing insights and assessing the integration of Syrian refugees, by analyzing a real-world call detail record (CDR) dataset including calls from refugees and locals in Turkey throughout 2017. Specifically, we exploit the similarity between refugees' and locals' spatial and temporal behaviors, in terms of communication and mobility in order to assess integration dynamics. Together with the already known methods for data analysis, we use a novel computational approach to analyze spatio-temporal patterns: Computational stigmergy, a bio-inspired scalar and temporal aggregation of samples. Computational stigmergy associates each sample with a virtual pheromone deposit (mark). Marks in spatiotemporal proximity are aggregated into functional structures called trails, which summarize the spatiotemporal patterns in data and allow computing the similarity between different patterns. According to our results, collective mobility and behavioral similarity with locals have great potential as measures of integration, since they are: 1) correlated with the amount of interaction with locals; 2) an effective proxy for refugee's economic capacity, and thus refugee's potential employment; and 3) able to capture events that may disrupt the integration phenomena, such as social tension

    Sleep behavior assessment via smartwatch and stigmergic receptive fields

    No full text
    Sleep behavior is a key factor in maintaining good physiological and psychological health. A well-known approach to monitor sleep is polysomnography. However, it is costly and intrusive, which may disturb sleep. Consequently, polysomnography is not suitable for sleep behavior analysis. Other approaches are based on actigraphy and sleep diary. Although being a good source of information for sleep quality assessment, sleep diaries can be affected by cognitive bias related to subject’s sleep perception, while actigraphy overestimates sleep periods and night-time disturbance compared to sleep diaries. Machine learning techniques can improve the objectivity and reliability of the observations. However, since signal morphology vary widely between people, conventional machine learning is complex to set up. In this regard, we present an adaptive, reliable, and innovative computational approach to provide per-night assessment of sleep behavior to the end-user. We exploit heartbeat rate and wrist acceleration data, gathered via smartwatch, in order to identify subject’s sleep behavioral pattern. More specifically, heartbeat rate and wrist motion samples are processed via computational stigmergy, a bio-inspired scalar and temporal aggregation of samples. Stigmergy associates each sample to a digital pheromone deposit (mark) defined in a mono-dimensional space and characterized by evaporation over time. As a consequence, samples close in terms of time and intensity are aggregated into functional structures called trails. The stigmergic trails allow to compute the similarity between time series on different temporal scales, to support classification or clustering processes. The overall computing schema includes a parametric optimization for adapting the structural parameters to individual sleep dynamics. The outcome is a similarity between sleep nights of the same subject, to generate clusters of nights with different quality levels. Experimental results are shown for three real-world subjects. The resulting similarity is also compared with the dynamic time warping, a popular similarity measure for time series
    corecore